- Title
- On the convergence of von Neumann's alternating projection algorithm for two sets
- Creator
- Bauschke, H. H.; Borwein, J. M.
- Relation
- Set-Valued Analysis Vol. 1, Issue 2, p. 185-212
- Publisher Link
- http://dx.doi.org/10.1007/BF01027691
- Publisher
- Springer Netherlands
- Resource Type
- journal article
- Date
- 1993
- Description
- We give several unifying results, interpretations, and examples regarding the convergence of the von Neumann alternating projection algorithm for two arbitrary closed convex nonempty subsets of a Hilbert space. Our research is formulated within the framework of Fejér monotonicity, convex and set-valued analysis. We also discuss the case of finitely many sets.
- Subject
- von Neumann's algorithm; Hilbert space; algorithm; alternating method; convex sets; open mapping
- Identifier
- http://hdl.handle.net/1959.13/940946
- Identifier
- uon:13150
- Identifier
- ISSN:0927-6947
- Language
- eng
- Reviewed
- Hits: 3854
- Visitors: 3805
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|